A Primer on SQL (1st Edition)

Rahul Batra

18 October 2012

TABLE OF CONTENTS

10)

Licensing

Preface

Acknowledgements

An Introduction to SQL
Gettingyour Database ready
Constraints

Operation®n Tables

Writing Basic Queries
ManipulatingData

Omanizing your Data
Doingmore with Queries
Aggregation and Grouping
Understandingoins
Appendix: Major Database Management Systems
Glossary

-2-

To Mum and Dad

LICENSING

Copyright (c) 2012 by Rahul Batra. This material may be distributed only subject to the terms and condi-
tions set forth in the Open Publication License, v1.0 or later (the latest version is pregafathleaat
http://www.opencontent.org/openpub/).

Distribution of substantiely modified \ersions of this document is prohibited without the explicit permis-
sion of the copyright holder.

Distribution of the work or devetive d the work in ag standard (paper) book form is prohibited unless
prior permission is obtained from the copyright holder.

All trademarks and trade names are the properties of their respaetiers.

Open Publication License
v1.0, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication evks may be reproduced and distributed in whole or in part,yinmadium plysi-

cal or electronic, pnaded that the terms of this license are adhered to, and that this license or an incorpora-
tion of it by reference (with gnoptions elected by the author(s) and/or publisher) is displayed in the repro-
duction.

Proper form for an incorporation by reference is as follows: Copyright (c) <year> by <au#ime or
designee>. This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, vX.Y or later (the latest version is presentijlable at http://wwwopencon-
tent.org/openpub/).

The reference must be immediately folkd with ary options elected by the author(s) and/or publisher of

the document (see section VI).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and
author The publisher and autherhames shall appear on all outer surfaces of the book. On all outer sur
faces of the book the original publisherame shall be as Ige as the title of the work and cited as posses-
sive with respect to the title.

[I. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee.

[ll. SCOPE OF LICENSE

The following license terms apply to all Open Publicatiamrks, unless otherwise explicitly stated in the
document.

Mere aggrgaion of Open Publication works or a portion of an Open Publication work with other works or
programs on the same media shall not cause this license to apply to those other works. Gée aggte
shall contain a notice specifying the inclusion of the Open Publication material and appropsiatghtop
notice.

SEVERABILITY. If any part of this license is found to be unenforceable Wjarisdiction, the remaining
portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided "as is" without warranty &freh
express or implied, including,ub not limited to, the implied warranties of merchantability and fithess for a
particular purpose or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents\aed by this license, including translations, anthologies, compila-
tions and partial documents, must meet the Wollg requirements: The modified version must be labeled

as such.

The person making the modifications must be identified and the modifications dated.

Acknowledgement of the original author and publisher if applicable must be retained according to normal
academic citation practices.

The location of the original unmodified document must be identified.

The original authos (or authors’) name(s) may not be used to assert or imply endorsement of the resulting
document without the original authsibr authors’) permission.

V. GOOD-PRACTICE RECOMMENBTIONS

In addition to the requirements of this license, it is requested from and strongly recommended ofiredistrib
tors that: If you are distributing Open Publication works on hardoo&D-ROM, you provide email noti-
fication to the authors of your intent to redistribute at least thirty days before your manuscript or media
freeze, to gie the authors time to provide updated documents. This notification should describe modifica-
tions, if ary, made to the document. All substasmtinodifications (including deletions) be either clearly
marked up in the document or else described in an attachment to the docurimadiy, while it is not
mandatory under this license, it is considered good fornféo affree cop of any hardcopy and CD-ROM
expression of an Open Publication-licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by
appending language to the reference to oy amfpthe license. These options are considered part of the
license instance and must be included with the license (or its incorporation by referencegivaeks.

A. To prohibit distribution of substanttly modified versions without the explicit permission of the
author(s). "Substami nodification” is defined as a change to the semantic content of the document, and
excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase 'Distribution of substalytimodified versions of this document is pro-
hibited without the explicit permission of the copyright holderthe license reference or gop

B. To prohibit ary publication of this work or devétive works in whole or in part in standard (paper) book
form for commercial purposes unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase 'Distribution of therkvor dervative d the work in ag standard
(paper) book form is prohibited unless prior permission is obtained from the copyright’ Holdbe
license reference or cop

PREFACE

Welcome to the first edition oA Primer on SQL As you would be able to see, the bookagly
short and is intended as an introduction to the basics of SQL. No prior experience with SQL is necessary
but some knowledge of working with computers in general is required. My purpose of writingabitow
provide a gentle tutorial on the syntax of SQL, so that the reader is able to recognize the parts of queries
they encounter andwen be dle to write simple SQL statements and queries themselves. The heekeho
is not intended as a reference work or for a full time database administrator since it doge avekeus-
tive topic coverage.

For the curious, the book was typeset usingff and itsmsmacro set. Gie it a whirl, its quite powerful.

Your questions, comments, criticism, encouragement and corrections are most welcome and you can e-mail
me atrhlbatra[aht]hotmail[dotjcom [I'll try answering all on-topic mails and will try to include sugges-
tions, errors and omissions in future editions.

Rahul Bata (8th October 2012)

ACKNOWLEDGEMENTS

This work would not hee been completed without the support of my family and friends. A big thank
you is in order for my leely wife Pria, who not only acted as an editor but also constantly supported and
cheered me on to complete it. Mathanks to my parents too, who got me a computer early in life to start
tinkering around with and for constantly encouraging me to pursue my dreams.

Thanks also go out to my sister and niece (may ywa hdeautiful life ahead) and my friends for bringing
much happiness into my life. Finally | would diko aknowledge the contribution of my teachers who
helped me form my computing knowledge.

1. ANINTRODUCTION T O SQL

A databaseis nothing but a collection of ganized data. It doeshhaveto be in a digital format to
be called a database. A telephone directory is a geabpge, which stores data about people agandr
zations with a contact numbeoftware which is used to manage a digital database is calledadase
Management System (DBMS)

The most preslent database ganizational model is th®elational Model, devdoped by DrE F Godd in

his groundbreaking research papek Relational Model of Data for Laye $ared Data Banks In this
model, data to be stored igyanized as rows inside a table with the column headings specifying the corre-
sponding type of data stored. This is not umkkpreadsheet where the firsiw@an be thought of as col-
umn headings and the subsequent rows storing the actual data.

SQL stands fostructur ed Query Languageand it is the de-facto standard for interacting with relational
databases. Almost all database management systems you'll come acrossendl| S implementation.

SQL was standardized by the American National Standards Institute (ANSI) in 1986 and hgeneder
mary revisions. Havever, dl DBMS's do rot strictly adhere to the standard defined but ratherversme
features and add others to yide a unique feature set. Nonetheless, the standardization process has been
helpful in giving a uniform direction to the vendors in terms of their interaction language.

1.1. SQLCommands Classification

SQL is a language for interacting with databases. It consists of a number of commands with further
options to allv you to carry out your operations with a database. While DBM&er in the command
subset the provide, usually you would find the classifications belo

1. Data Definition Language (DDL)Y CREATE TABLE, ALTER TABLE, DROP TABLE etc.
These commands alloyou to create or modify your database structure.

2. Data Manipulation Language (DML): INSERTUPDATE, DELETE
These commands are used to manipulate data stored inside your database.

3. Data Query Language (DQL) SELECT
Used for querying or selecting a subset of data from a database.

4. Data Control Language (DCL). GRANT REVOKE etc.
Used for controlling access to data within a database, commonly used for granting user privileges.

Besides these, your database management system veapgiother sets of commands to work moffe ef
ciently or to preide extra features. But it is safe to say that the onegalimuld be present in almost all
DBMS'’s you encounter.

1.2. Explaining Tables

A table in a relational database is nothing but a matrix of data where the columns describe the type of
data and the m contains the actual data to be storedvéda bok at the figure beloto get a sense of the
visualization of a table in a database.

id | language author year
1 Fortran Backus | 1955
2 Lisp McCartly | 1958
3 Cobol Hopper | 1959

Figure: a table describing Bgramming Languges

The abee table stores data about programming languages. It consists of 4 columns (id, language, author
and year) and 3 rows. The formal term for a column in a databa$eld@nd a rav is known as aecord.

There are tw things of note in the figure abe The first one is that, thd field efectively tells you noth-

ing about the programming language by itself, other than its sequential position in the table. The second is
that though we can understand the fields by looking at their namesyaeohdormally assigned a data

type to them i.e. we ka rot restricted (not yet gways) whether a field should contain alphabets or num-
bers or a combination of both.

Theid field here serves the purpose giranary k ey in the table. It makes each record in the table unique
and its advantages will become clearer in chapters to come. Butwaronsider this, what if a language
creator made tw languages in the same year; wewd hae a dfficult time narrowing down on the
records. Anid field usually serves as a good primagy lénce it's guaranteed to be unique, but usage of
other fields for this purpose is not restricted.

Just like programming languages, SQL also hiata typesto define the kind of data that will be stored in
its fields. In the table gén above, we @n see that the fieldanguage andauthor must store English lan-
guage characters. Thus their data type during table creation should be speedretiaswhich stands for
variable number of characters

The other commonly used data types you will encounter in subsequent chapters are:
Fixed length characters char

Integer values int

Decimal numbers decimal

Date data type date

2. GETTING YOUR DATABASE READY

The best way to learn SQL is to practice writing commands on a real relational database. In this book
SQL is taught using a product calledjres. The reasons for choosing Ingres are simple - it comes in a
free and open source editionsitvailable on most major platforms andsita ll-fledged enterprise class
database with manfeatures. Haever, any relational database product that you can get your hands on
should serg you just fine. There might be minor incompatibilities betweefemiht vendors, so if you
choose something else to practice on while reading this book, it would be a good idea to keep the database
vendor's iser manual handy.

Since this text deals largely with teaching SQL in a product independent matimer than the teaching of
Ingres per se, details with respect to installation and specific operations of the product epll teeskmin-
imum. Emphasis is instead placed onwa $pecific steps that will help you to get working on Ingresaas f
as possible.

The current ersion of Ingres during the writing of the boolkas 0.1 and theCommunity Edition has

been used on a Mows box for the chapters to follo The installation itself is straightforward ékany

other Windows software. Havever if you are unsure on wroption, ask your DB (database administrator

in case one isvailable) or if you are practicing on a home box - select the "Traditional Ingres’ mode and
install the Demo database when it asks you these questions. Feel free to refer to the Ingres installation guide
that is aailable on the web at the following locatiohttp://docs.actian.com/ingres/10.0/installation-guide

If your installation is successful, you should be able to starintires Visual DB\ from the Start Menu.
This utility is a graphical user interface to manage your Ingres databases, but we will keep the usage of this
to a minimum since our interest lies in learning SQL rather than database administration.

2.1. Creating your own database

Most database management systems, including Ingres; ydlo to create multiple databasesr F
practice purposes #'alvisable to create youmm database, so that you are free to perforynoperations
on it.

Most database systems differ in thaywhey provide database creation facilities. Ingres aotighe same

by providing you multiple ways to do this, including through theusl DBA utility. Howeve for didactic
purposes, we will instead use a command operation to create our database. Opénguesti@zommand
Promptfrom the program menu (usually found inside Start Menu->Programs->Ingres for Micraseft W
dows systems), and enter the command aswbelo

C.\ Docunents and Settings\rahul b>createdb testdb
Creating database 'testdb’

Creating DBMS System Cat al ogs .

Modi fyi ng DBMS Syst em Cat al ogs .

Creating Standard Catal og Interface .

Creating Front-end System Cat al ogs .
Creation of database 'testdb’ conpl eted successfully.

Listing: using createdb and its sample output

The commandreatedb is used to create a database which will s&tw a blding ewvelope for your tables.
In the example and output shown elowe aeated a database calleabstdbfor our use. ¥u (or more
specifically your system login) arewahe owner of this database andd@#ull control of entities within it.
This is analogous to creating a file in an operating system where the creator gets full access control rights

-10-

and may choose tovg aher users and groups specific rights.

2.2. Table Creation

We havealready &plored the concept of a table in a relational model. It i8 time to create one
using a standard SQL comman@REATE TABLE

Note: the SQL standard by definition allows commands aydidrds to be written in a case insenagti
manner In this book we would use uppercase letters while writing them in statements, which is a widely
accepted practice.

CREATE TABLE <Tabl e_Nane>
(<Field 1> <Data Type>,
<Field 2> <Data Type>,

<Field N> <Data Type>);
Listing: General Syntax of a CREATE TABLE statement

This is the simplestalid statement that will create a table for yowaif of ary extra options. &'l fur-
ther this with clauses and constraints as we go along, butvioletas use this general syntax to actually
create the table of programming languages we introduced in Chapter 1.

The easiest way to get started with writing SQL statements in Ingres is to udéshalrSQL application
which gives you a graphical interface to write statements ana wigtput. The usual place to find it on a
Windows system is Start -> Programs -> Ingres -> Ingres Il -> Other Utilities.

When you open it up, it gés you a set of dropdown besz on the top half of the windowhere you can
select the database you wish torlwupon and other such options. Since we'll be using the same database
we created previously (testdb), go ahead and select the options as specified belo

Default User <your username>
Default Serer INGRES
Database testdb

The actual SQL statement you would be writing to create your tabheerstwglow.

CREATE TABLE progl ang tbl (
id | NTEGER,

| anguage VARCHAR(20),

aut hor VARCHAR(25) ,

year | NTEGER) ;

Listing: Creating the psggramming languges table

Press the 'Go’ or F5 button when you're done entering the query in full. If you get no errors backsfrom V
ual SQL, then congratulations are in order sincewmijust created your first table.

The statement by itself is simple enough since it resembles the general syGREAE TABLE we dis-
cussed beforehand. It is interesting to note the data types chosen for the fieldd.aBdtyear are speci-
fied as intgers for simplicity even though there are better alternati. Thelanguayefield is given a gace

-11-

of 20 characters to store the name of the programming language wtalathioefield can hold 25 charac-
ters for the creats’name.

The semicolon at the last position is the delimiter for SQL statements and it marks the end of a statement.

2.3. Insertingdata

The table we ha just created is empty so our taskwnbecomes insertion of some sample data
inside it. © populate this data in the form ofws we use the DML command INSERvhose general syn-
tax is gven below.

| NSERT | NTO <Tabl e Nane>
VALUES (' Valuel', "Value2', . . .);

Listing: General syntax of INSERT TABLE

Fitting some sample values into this general syntax is simple enough, providegpvia knind the struc-
ture of the table we are trying to insert thesio. For populating theroglang_tbl with rows like we sw
in chapter 1, we would ke o use thredNSERTstatements as belo

| NSERT | NTO progl ang tbl VALUES (1, 'Fortran’, ’'Backus’', 1955);
| NSERT | NTO proglang tbl VALUES (2, 'Lisp’, 'MCarthy', 1958);
| NSERT | NTO progl ang tbhl VALUES (3, 'Cobol’, 'Hopper’, 1959);

Listing: Inserting data into the pglang_tbl table

If you do not receie any erors from Ingres Visual SQL (or the SQL interface for your chosen DBMS),
then you hee managed to successfully insert 3 rows of data into your table. Noticevetve arefully

kept the ordering of the fields in the same sequence as we used for creating our table. This strict ordering
limitation can be remaed and we will see he to echieve that in a little while.

2.4. Writing your first query

Let us nev turn our attention to writing a simple query to check the results of ouiopseoperations
in which we created a table and inserted threesrof data into it. For this, we would use a Data Query
Language (DQL) command call&ELECT

A queryis simply a SQL statement that allows you to re&ia seful subset of data contained within your
database. You might e roticed that thdNSERTand CREATE TABLE commands were referred to as
statements, but a fetching operation vB&LECTfalls under the query category.

Most of your day to day operations in a SQL environment wowohie queries, since yod’'be geating
the database structure once (modifying it only on a need basis) and inserting rows onlywhatarie
awailable. While a typicaBELECTquery is fairly comphe with mary clauses, we will begin our journdy
writing down a query just toerify the contents of our table. The general syntax of a simple quemeis gi
below.

| SELECT <Sel ecti on> FROM <Tabl e Nane>; \

Listing: General Syntax of a simple SQL query

-12-

Transforming this into our result verification query is a simple tagkdiady knev the table we wish to

query -proglang_tbl and for our selection we would uséstar), which will select all rows and fields from
the table.

SELECT * FROM progl ang_tbl ;

The output of this query would be all the (3) rows displayed in a matrix format just as we intended. If you
are running this through Visual SQL on Ingres, you would get a message at the bottom Sagahg -
Fetched Row(s): 3

-13-

3. CONSTRAINTS

A constraintis a rule that you apply or abide by while doing SQL operationsy ateeuseful in
cases where you wish to neathe data inside your database more meaningful and/or structured. Consider
the example of the programming languages tableryg@rogramming language that has been created, must
have an author (whether a single person, or a couple or a committee). Similarly it shaelc hear when
it was introduced, be it the year it first appeared as a research paper or the gdang compiler for it
was written. In such cases, it makes sense to create your table in saghttaatvcertain fields do not accept
aNULL (empty) value.

We row modify our previous CREATE TABLE statement so that we can apply the NULL constraint to some
fields.

CREATE TABLE progl ang t bl copy (
id | NTEGER NOT NULL,
| anguage VARCHAR(20) NOT NULL,
aut hor VARCHAR(25) NOT NULL,
year | NTEGER NOT NULL,
standard VARCHAR(10) NULL);

Listing: Creating a table with NULL constraints

We e in this case that weveaachieved our objectve d creating a table in which the fiekdd, languaye,
authorandyearcannot be empty for sirow, but the nev field standardcan talke enpty values. W now go
about trying to insert merows into this table using an alternatiiINSERTsyntax.

3.1. Selectre fields INSERT

From our last encounter with thHSERTstatement, we gathat we had to specify the data to be
inserted in the same order as specified during the creation of the table in questiom bk at another
variation which will allov us to vercome this limitation and handle insertingwowith embedded NULL
values in their fields.

I NSERT | NTO <Tabl e_Nane>
(<Field Nane 1>,
<Fi el d Name 2>,

<Field Nane N>)
VALUES

(<Val ue For Field 1>,
<Val ue For Field 2>,

<Val ue For Field N>);

Listing: General Syntax of INSERT with selected fields

Since we specify the field order in the statement itself, we are free to reordelube sequence in the
same statement thus removing the first limitation. Also, if we wish to enter a empty (Naluk)in ay of
the fields for a record, it is easy to do so by simply not including thesfiedie in the first part of the
statement. The statement would run fine without specifyipgfiatds you wish to omit provided thelo
not have a NOT NULL constraint attached to them.eWow write somelNSERT statements for the
proglang_tblcopytable, in which we try to insert some languages whicie lmat been standardized byyan

-14-

organizations and some whichveakbeen.

| NSERT | NTO progl ang tblcopy (id, |anguage, author, year, standard)
VALUES (1, 'Prolog’, 'Col nerauer’, '1972', '1SO);

| NSERT | NTO progl ang_tbl copy (id, |anguage, author, year)
VALUES (2, 'Perl’, "Wall’, *1987");

| NSERT | NTO progl ang tblcopy (id, year, standard, |anguage, author)
VALUES (3, '1964’, 'ANSI’, 'APL', 'lverson’);

Listing: Inserting ne data into the poglang_tblcopy table

When you run this through your SQL interface, 3vmews would be inserted into the table. Notice the
ordering of the third ne; it is not the same sequence we used to create the tablePaidmas not been
standardized by an international bpdg we @ not specify the field name itself while doing ttNSERT
operation.

To verify the results of these statements and toensake that the correct data went into the correct fields,
we run a simple query as before.

SELECT * FROM progl ang_t bl copy;

id | language author year | standard
1 Prol og | Col nerauer | 1972 | SO
2 Per | Wal | 1987 | (null)
3 APL | ver son 1964 ANSI

Figure: Result of the query run onogfang_tblcopy

3.2. Primary Key Constraint

A primary keyis used to makeach record unique in atleast one way by forcing a fieldie b@que
values. Thg do rot have 10 be estricted to only one field, a combination of them can also be defined as a
primary ley for a table. In our programming languages tablejdHrld is a good choice for applying the
primary key onstraint. Vé will now modify our CREATE TABLIEtatement to incorporate this.

CREATE TABLE progl ang_tbltmp (

id | NTEGER NOT NULL PRI MARY KEY,
| anguage VARCHAR(20) NOT NULL,

aut hor VARCHAR(25) NOT NULL,

year | NTEGER NOT NULL,

standard VARCHAR(10) NULL);

Listing: a CREATE TABLE statement with a primasy k

ID fields are usually chosen as primary fields. Note that in this particular tablanthege field would
have dso worked, since a language name is uniquexéler, if we havea table which describes say people
- since two people can hae the same name, we usually try to find a unique fiekltikir SSN number or
employee ID number.

-15-

3.3. UniqueKey Constraint

A unique leylike aprimary lkeyis also used to makeach record inside a table unique. Once you
have defined theprimary ley of a table, ay other fields you wish to makunique is done through this con-
straint. For example, in our database ivrmoakes sense to kia aunique ley constraint on théanguage
field. This would ensure none of the recordsilg duplicate information about the same programming lan-
guage.

CREATE TABLE progl ang_tbl uk (

id | NTEGER NOT NULL PRI MARY KEY,
| anguage VARCHAR(20) NOT NULL UNI QUE,

aut hor VARCHAR(25) NOT NULL,

year | NTEGER NOT NULL,

standard VARCHAR(10) NULL);

Listing: a CREATE TABLE statement with a primagy nd a unique constraint

Note that we write the @rd UNIQUE in front of the field and omit the KEY in this case. You cavehas
mary fields with unique constraints as you wish.

3.4. Differences between a Primary Key and a Unique Key

You might have roticed that the ter constraints discussed almae similar in their purpose. ke
eva, there are a couple of differences between them.

1) A primary leyfield cannot ta& on a NULL value, whereas a field withumiqueconstraint can.
However, there can be only one such record since each value must be unique dueety the v
definition of the constraint.

2) You are allowed to define only opemary key constraint but you can apply thliquecon-
straint to as manfields as you like.

-16-

4. OPERATIONS ON TABLES

You might have roticed that we keep on makingwéables wheneer we ae introducing a ng con-
cept. This has had the not-so desirable effect of populating our database witimilan tables. Vé will
now go aout deleting unneeded tables and modifying existing ones to suit our needs.

4.1. Dropping Tables

The deletion of tables in SQL is achéd through theDROP TABLE command. W& will now drop
ary superfluous tables we Y@ aeated during the previous lessons.

DROP TABLE progl ang_tbl;
DROP TABLE progl ang_t bl copy;
DROP TABLE progl ang tbltnp;

Listing: dropping the temporary tables we created

4.2. Creating new tables from existing tables

You might have moticed that we ha dopped theproglang_tbltable and we n@ havewith us only
the proglang_tbluktable which has all the necessary constraints and fields. Theslattare was chosen
when we were discussing theigue ley onstraintbut it now ssems logical to migrate this table structure
(and ay corresponding data) back to the napneglang_tbl We achieve tis by creating a cgpof the ta-
ble using a combination of bo@REATE TABLE andSELECT commands and learn amelauseAS.

| CREATE TABLE <New Tabl e> AS SELECT <Sel ection> FROM <O d Tabl e>; \

Listing: general syntax for creating aweable from an existing one

Since oumproglang_tblukcontains no records, we will push some sample data in it so that we caretater v
ify whether the records themselves got copied or not. Notice thatowkl Wwave o give the field names
explicitly, else the second vo(which contains nstandardfield value) would gie a error similar to’num-

ber of taget columns must equal the number of specified valndggres.

| NSERT | NTO progl ang tbluk (id, |anguage, author, year, standard)
VALUES (1, 'Prolog’, 'Col nerauer’, '1972', '1SO);

| NSERT | NTO progl ang tbluk (id, |anguage, author, year)
VALUES (2, 'Perl’, "Wall’, '1987");

| NSERT | NTO progl ang tbluk (id, year, standard, |anguage, author)
VALUES (3, '1964’, 'ANSI’, "APL', 'lverson’);

Listing: inserting some data into theggtang_tbluk table

To ceate an exact cgmf the existing table, we use the same selection criteria asweesen before - *

(star). This will select all the fields from thgisting table and create thewé¢able with them alongwith

ary records. It is possible to use only a subset of fields from the old table by modifying the selection criteria
and we will see this later.

-17-

] CREATE TABLE proglang tbl AS SELECT * FROM progl ang t bl uk;

Listing: recreating a n& table from an existing one

We row run a simpleSELECTquery to see whether our objeetiwas achieed or not.

SELECT * FROM progl ang_tbl ;

id | language author year | standard
1 Prol og | Col nerauer | 1972 | SO
2 Per | Wal | 1987 | (null)
3 APL | ver son 1964 ANSI

Figure: Result of the query run onogfang_tbl

4.3. Modifying tables

After a table has been created, you can still modify its structure usidd. TeR TABLE command.
What we mean by modify is that you can change field types, simsadd or delete columns. There are
some rules you lve © abide by while altering a table, but forwave will see a simple example to modify
the fieldauthorfor theproglang_tbltable.

| ALTER TABLE <Tabl e name> <(peration> <Field with clauses>; \

Listing: General syntax of a simple ALTER TABLE command

We dready knav that we are going to operate on tireglang_tbltable and the field we wish to modify is
authorwhich should nev hold 30 characters instead of 25. The operation to choose in this ZdsEER
which would modify our existing field.

| ALTER TABLE progl ang_tbl ALTER aut hor varchar (30); \

Listing: Altering the author field

4.4. \erifying the result in Ingres

While one option to verify the result of cALTER TABLE command is to run alNSERTstatement
with the authos rame greater than 25 characters and verify that we get no errors back, it is a tedious
process. In Ingres specificaliye an look at thdngres Visual DBA application to check the columns tab
in thetestdbdatabase. Heever, another way to erify the same using a console tool is g command
line tool available through the Ingres Command Prompt we used earlier for database creation.

To launchisgl (which stands for Interae QL) using the Ingres command prompt we type:

lisql testdb \

The first agument we write is the database we wish to connect to. The result of running this command is an
interactve console windw where you wuld be able to write SQL statements and verify the results much
like Visual SQL The difference between thedWother than the obvious differences in the user interface) is

-18-

thatisql allows you access to tHéELP command, which is what we will be using to verify the result of
our ALTER TABLE statement. In the interaction winddhat opens up, we write théELP command as
belov and the subsequent box shows the output of the command.

HELP TABLE progl ang tbl;

Nane: proglang_tb

Onner : rahul b

Creat ed: 20-feb-2012 17:04: 28
Locati on: i i _dat abase

Type: user table

Ver si on: 1110.0

Page si ze: 8192

Cache priority: 0

Alter table version: 4
Alter table totwidth: 76

Row wi dt h: 76
Nurmber of rows: 3

St orage structure: heap
Conpr essi on: none
Dupl i cate Rows: al | owed
Nunber of pages: 3
Overfl ow data pages: O

Jour nal i ng: enabl ed after the next checkpoint
Base table for view no

Per mi ssi ons: none
Integrities: none

Optim zer statistics: none

Col um | nformati on:

Col um Nane Type Length Nulls Defaults Key Seq
id i nteger 4 no no

| anguage varchar 20 no no

aut hor varchar 30 yes nul |

year integer 4 no no

st andard varchar 10 yes nul |

Secondary i ndexes: none

Figure: the result of running the HELP TABLE command

While there is a lot of information in the result, we are currently interested @adluenn Informatiorsec-
tion which nav displays the n& length of theauthorfield, i.e. 30. But it is also important to note that our
ALTER TABLE statement just renved the not-null constraint from the fieldo Tetain the same, weawuld
have b gecify the constraint in thaLTER TABLE command since the default behavior is tovalldULL
values.

4.5. \erifying the result in other DBMS's

The HELP command we just sais secific to the Ingres RDBMS, it is not a part of the SQL stan-
dard. D achieve the same objeste an a dfferent RDBMS lile Oracle, you are provided with the
DESCRIBE command which allows you to wiea table definition. While the information this command
shav may vary from one DBMS to anothehey at least sha the field name, its data type and whether or

-19-

not NULL values are allowed for the particular field. The general synatax of the commareth ise¢gw.

| DESCRI BE <t abl e nane>;

Listing: the general syntax of the DESCRIBE statement

-20-

5. WRITING BASIC QUERIES

A queryis a SQL statement that is used to extract a subset of data from your database and presents it
in a readable format. As we e sen preiously, the SELECT command is used to run queries in SQL.
You can further add clauses to your query to get a filtered, more meaningful result. Since the majority of
operations on a database&dlve queries, it is important to understand them in detail. While this chapter
will only deal with queries run on a single table, you can r@EBECToperation on multiple tables in a
single statement.

5.1. Selectinga limited number of columns

We havealready seen Woto extractall the data from a table when we wegzifying our results in
the previous chapters. But as you mightéheoted - a query can be used to extract a subset of data¢oo. W
first test this by limiting the number of fields to shim the query output by not specifying theselection
criteria, but by naming the fields explicitly.

| SELECT | anguage, year FROM proglang thl; \

Listing: selecting a subset of fields from a table

language | ar
Prolog 1972
Perl 1987
APL 1964

Figure: Output of running the chosen fields SELECT query

You can see that the query we constructed mentioned the fields we wish to séngduege and year.

Also note that the result of this query is useful by itself as a report for looking at the chronology of pro-
gramming language creation. While this is not a rule enforced by SQL or a relation database management
system, it makes sense to construct your query in suely &hat the meaning is self-evident if the output is
meant to be read by a human. This is the reason we left out thigl fielthe querysince it has no inherent
meaning to the reader except ifyheish to knav the sequential order of the storage of records in the table.

5.2. Orderingthe results

You might have roticed that in our previous query output, the languages were printed out in the same
order as we had inserted them. But what if vest@d to sort the results by the year the language was cre-
ated in. The chronological order might reakore sense if we wish to wiethe deelopment of program-
ming languages through the decades. In such cases, evihadhkelp of the@DRDER BY clause. © achieve
our purpose, we modify our query with this additional clause.

| SELECT | anguage, year FROM progl ang tbl ORDER BY year; \
Listing: Usage d the ORDER BY clause

-21-

language | ar
APL 1964
Prolog 1972
Perl 1987

Figure: Output of the ordered SELECT query

The astute reader will notice that the output of ORDER BYclause was ascendingo Tevese this, we
add the argumemESC to ourORDER Btlause as bela

| SELECT | anguage, year FROM progl ang tbl ORDER BY year DESC, \
Listing: Usage d the ORDER BY clause with the DESC argument

language | ear
Perl 1987
Prolog 1972
APL 1964

Figure: Output of the ordered SELECT query in descending order

5.3. Ordering using field abbreviations

A useful shortcut in SQL irolves ordering a query result using an gigteabbreviation instead of the
complete field name. The abbiations are formed starting with 1 which iz to the first field specified
in the query?2 to the second field and so on. Rewriting ourebquery to sort the output by descending
year we et:

SELECT | anguage, year FROM progl ang_tbl ORDER BY 2 DESC,

language | ear
Per | 1987
Prolog | 1972
APL 1964

Figure: Output of the ordered SELECT query in descending order using fiekeMakibns

The 2 argument gen to the ORDER Btlause signifies ordering by the second field specified in the,query
namelyyear.

5.4. Puttingconditions with WHERE

We havealready seen loto slect a subset of dataadable in a table by limiting the fields queried.
We will now limit the number of records retvied in a query using conditions. TH&/HERE clause is used
to achiee this and it can be combined witkpdicit field selection or ordering clauses to provide meaning-
ful output.

-22-

For a query to run successfulljt must hae aleast tvo parts - theSELECTand theFROM clause. After
this we place the option&/HEREcondition and then the ordering clause. Thus, if we wanted to see the
programming language (andsituthor) which was standardized by ANSI, d&rrite our query as bela

| SELECT | anguage, aut hor FROM progl ang_tbl WHERE standard = ' ANSI ' ; \

Listing: Using a WHERE conditional

As you may hee roticed, the query we forulated specified ldmguaye andauthorfields, but the condition
was imposed on a separate field altogethstandard Thus we can safely say that while we can choose
what columns to displayur conditionals can work on a record withyanf its fields.

language | author
APL Iverson

Figure: Output of the SELECT query with a WHERE conditional clause

You are by no means restricted to use = (equals) for your conditions. It is perfectly acceptable to choose
other operators l& < and >. You can also include ti@RDER BYclause and sort your output. Araenple
is given below.

SELECT | anguage, author, year FROM proglang tbl WHERE year > 1970
ORDER BY aut hor;;

Listing: Combining the WHERE and ORDER BY

language author year
Prolog Colmerauer 1972
Perl Wall 1987

Figure: Output of the SELECT query with a WHERE and ORDER BY

Notice that the output only shows programming languagedaped after 1970 (atleast according to our
database). Also since the ordering is done byamhar field, the sorting is done alphabetically in an
ascending order.

-23-

6. MANIPULATING DATA

In this chapter we study tHeata Manipulation Language (DML) part of SQL which is used to
malke changes to the data inside a relational database. The three basic commands of DML are as follows.

INSERT Populates tables with medata
UPDATE Updates existing data
DELETE Deleteslata from tables

We havealready seen avieexamples on théNSERTstatement including simple inserts and selectield
insertions. Thus we will concentrate on other ways to use this statement.

6.1. InsertingNULL's

In previous chapters, we V& £en that not specifying a column value while doing sekedield
INSERToperations results in a null value being set for thee cdf also explicitly use theskword NULL
in SQL to signify null values in statements lIRSERT

I NSERT |INTO proglang tbl VALUES (4, 'Tcl', ’'Qusterhout’, '1988",
NULL) ;

Listing: Inserting NULL values

Running a query to skhothe contents of the entire table helps us to verify the result.

SELECT * FROM progl ang_tbl ;

id | language author year | standard
1 Prol og | Col nerauer | 1972 | SO
2 Per | Wal | 1987 | (null)
3 APL | ver son 1964 ANSI

4 Tcl Qusterhout | 1988 | (null)

Figure: a table with NULL values

6.2. Insertingdata into a table from another table

You can insert n& records into a table from another one by using a combinatidNSERTand
SELECT Since a query wuld return you some records, combining it with an insertion commauttiw
enter these records into theantble. You canen use awHEREconditional to limit or filter the records
you wish to enter into the metable. W will now create a ne& table calledstdlang_th] which will have
only two fields -language andstandard In this we would insert rows from th@oglang_tbltable which
have a ron-null value in thestandardfield. This will also demonstrate our first use of a boolean operator -
NQT.

-24-

CREATE TABLE stdlang tbl (language varchar(20), standard varchar
(10));

I NSERT | NTO stdlang tbl SELECT | anguage, standard FROM progl ang tbl
VWHERE standard |S NOT NULL;

Listing: Using INSERT and SELECT to conditionally load data into another table

When you viav the contents of this table, you will notice that it has @itkip the tw languages which
actually had atandardcolumn value.

language | standard
Prolog ISO
APL ANSI

Figure: Contents of the stdlang_tbl table

6.3. Updatingexisting data

To modify some data in a record, we use theDATE command. While it cannot add or delete
records (those responsibilities are deled to other commands), if a record exists it can modify its data
even dfecting multiple fields in one go and applying conditions. The general syntaxXUPRATE state-
ment is gven below.

UPDATE <t abl e_nane> SET

<col uml> = <val ue>,
<col um2> = <val ue>,
<col um3> = <val ue>

VWHERE <condi ti on>;
Listing: General Syntax of the URDE command

Let us nev return to ouiproglang_tbltable and add a merow aout theForth programming language.

| NSERT | NTO proglang tbhl VALUES (5, 'Forth’, 'More', 1973, NULL);

We later realize that the language actually was created near 1972 (instead of 1973) and it actually has been
standardized in 1994 by t#eNSl Thus we write our update query to reflect the same.

UPDATE progl ang_thbl SET year = 1972,
standard = ' ANSI' WHERE | anguage = 'Forth’;

Listing: Updating multiple fields in a single statement

If you've typed the statement correctly and no errors arevinbimack, the contents of the record in question
would hare keen modified as intendedeNfying the result of the samevinlves a simple query the likes of
which we h&e sen in previous examples.

-25-

6.4. Deletingdata from tables

You can use thdELETEcommand to delete records from a table. This means that you can choose
which records you ant to delete based on a condition, or delete all records but you cannot delete certain
fields of a record using this statement. The general syntax DBhETEstatement is gien below.

| DELETE FROM <t abl e_name> WHERE <condi ti on>; \

Listing: General syntax of DELETE

While putting a conditional clause in tBEELETEIs optional, it is almost alays used. Simply because not
using it would cause all the records to be deleted from a table, which is a eiglgeed. Vi now write
the full statement to delete the record corresponding to Forth from the table.

| DELETE FROM progl ang tbl WHERE | anguage = 'Forth’; \

Listing: Deleting a recat from the poglang_tbl table

id | language author year | standard
1 Prolog Colmerauer| 1972 ISO
2 Perl Wall 1987 (null)
3 APL Iverson 1964 ANSI
4 Tcl Ousterhout | 1988 (null)

Figure: table contents after the redodeletion

-26-

7. ORGANIZING YOUR DATA

The number of fields you wish to store in your databasgdvoe a larger value than theefigolumn
table we sa& earlier chapters. Also, some assumptions were made intrinsically on the kind of data we will
store in the table. But this is notalys the case in real life. In reality the data we encounter will be com-
plex, even redundant. This is where the study of data modelling techniques and database design come in.
While it is advised that the reader refer to a more comprefeemsatise on this subject, nonetheless we
will try to study some good relational database design principles since the giutty seme in handy
while learning SQL statements for multiple tables.

7.1. Normalization

Let us suppose we i@ a Gtabase of employees in a fictional institution asrgbelow. If the data-
base structure has not been modelled but has bé=icted from a na& collection of information aailable,
redundancys expected.

employee_id name skill manager_id location
1 Socrates Philosoph (null) Greece
2 FAato Writing 1 Greece
3 Aristotle Science 2 Greece
4 Descartes| Philosogh (null) France
4 Descartes| Philosogh (null) Netherlandg

Figure: the fictional firms database

We @an see thadDescarteshas tvwo rows because he spent his life in both France and Netherlands. At a later
point we decide that we wish to classify him with a different skill, we would kaupdate both rows since
they should contain an identical (primary) skill. It would be easier tet@mgparate table for skills and and
somehw allow the records which share the same skill to refer to this table. Hyisfwve wish to reflect

that both Socrates and Descartes were thinkévésitern Philosophyenaming the skill record in the sec-
ond table would do the trick.

This process of breaking down awdatabase into logical tables and reting redundancies is callédior-
malization. There are en levds of normalization called nhorm&drms which dictate on he to acheve
the desired design.

7.2. Atomicity

In the programming language examplesweekten, our assumption hasvals been that a language
has a single authoBut there are countless languages where multiple people edeattito the core design
and should rightfully be acknowledged in our tablewrieould we go about making such a record? Let us
take the case oBASIC which was designed by Johrekery and Thomas Kurtz. The easiest option to add
this nav record into the table is to fit both auttsin the authorfield.

-27-

id | language author year | standard
1 Prolog Colmerauer | 1972 ISO
2 Perl Wall 1987 (null)
3 APL Iverson 1964, ANSI
4 Tcl Ousterhout | 1988 (null
5 BASIC Kemely, Kurtz | 1964 ANSI

Figure: a recod with a non-atomic field value

You can immediately see that it would befidifilt to write a query to retri@ this record based on the
authorfield. If the data written aKemeny Kurtz or Kurtz, Kemenyor even Kemeny & Kirtz, it would be
extremely difficult to put the right string in tH&HEREconditional clause of the querfhis is often the
case with multiple values, and the solution is to redesign the table structureetdirfiakd value atomic

7.3. RepeatingGroups

Another simple (but ultimately wrong) approach that comes to mind is to sphttherfield into
two parts -authorlandauthor2 If a language has only one authibre author2field would contain a null
value. Can you spot the problem that will arise from this design decision?

id | language authorl author2 | year | standard
1 Prolog Colmerauer (null) 1972 ISO

2 Perl Wall (null) 1987 (null)
3 APL Iverson (null) 1964 ANSI
4 Tcl Ousterhout | (null) 1988 (null)

5 BASIC Kemelty Kurtz 1964 ANSI

Figure: a table with a repeating group

This imposes an artificial constraint ormhmary authors a language canvealt seems to wrk fine for a

couple of them, lt what if a programming language was designed by a committee of a dozen or more peo-
ple? At the database design timewhao we fix the number of authors we wish to support? This kind of
design is referred to as a repeating grang must be actély avoided.

7.4. Splitting the table

The correct design to rew® the problems listed ake is to lit the table into tw - one holding the
author details and one detailing the language.

-28-

author_id author language_id
1 Colmerauer 1
Wall 2
Qusterhout 4
Iverson 3
Kemetry 5
Kurtz 5

OO~ WIN

Figure: a table holding author details

id | language | year | standard

1 Prolog 1972 ISO
2 Perl 1987 (null)
3 APL 1964 ANSI
4 Tcl 1988 (null)
5

BASIC 1964 ANSI

Figure: a table holding mgramming languge cetails

Once you hee removed the non-atomicity of fields and repeating groups alongwith assigning unigue id’
your tables, your table structure isanim the firstnormal form The author tablg’language id field which
refers to thed field of the language table is callefbeeign key constraint

CREATE TABLE newl ang_thbl (id | NTEGER NOT NULL PRI MARY KEY,
| anguage VARCHAR(20) NOT NULL,
year | NTEGER NOT NULL,
st andard VARCHAR(10) NULL);

Listing: creating the n& programming languges table

CREATE TABLE aut hors_thbl (author_id | NTEGER NOT NULL,

aut hor VARCHAR(25) NOT NULL,

| anguage_i d | NTEGER REFERENCES
new ang thbl (id));

Listing: creating the authartable

Notice that in the auth@’'table weve made a foreign &y constraint by making thienguage id field refer
ence thed field of the nev programming languages table using tlesvikord REFERENCES. You can
only create a foreigndy reference a primary or uniquey otherwise during the constraint creation time
we would recige an error similar to the following.

E PS0490 CREATE/ ALTER TABLE: The referenced <columms in table
"newl ang_tbl’
do not forma unique constraint; a foreign key may only reference
colums in a unique or primary key constraint.
(Thu May 17 15:28:45 2012)

-29-

Since we hee aeated a reference to tlenguage id, inserting a rev in the authors table which does not
yet have a hnguage entry would also result in an ercalied a Referential Integrityiolation.

I NSERT |INTO authors tbl (author_id, author, Ilanguage id) VALUES (5,
" Kenmeny', 5)

E US1906 Cannot INSERT into table '"authors tbhl"' because the val ues do
not match those in table ""newang tbl"’ (violation of REFERENTI AL
constraint ’'"$autho_r0000010c00000000"").

However when done sequentialliye. the language first and then its corresponding entry in the author table,
eveaything works out.

I NSERT |INTO newlang tbl (id, |anguage, year, standard) VALUES (5,
"BASIC, 1964, 'ANSI');

I NSERT | NTO authors_tbl (author_id, author, |anguage_ id) VALUES (5,
' Keneny', 5);

Listing: making entries for BASIC in both the tables

The other statements to get fully populated tables sea gelow.

| NSERT | NTO new ang t bl (id, language, year, standard) VALUES (1,
"Prolog’, 1972, '1SO);

I NSERT | NTO new ang tbl (id, language, year) VALUES (2, 'Perl’,
1987) ;

| NSERT | NTO new ang t bl (id, language, year, standard) VALUES (3,
"APL’, 1964, 'ANSI’);

| NSERT | NTO newl ang_tbl (id, |anguage, year) VALUES (4, ’'Tcl', 1988);

I NSERT | NTO authors_tbl (author_id, author, |anguage id) VALUES (6,
"Kurtz', 5);

I NSERT | NTO authors_tbl (author_id, author, |anguage id) VALUES (1,
" Col nerauer’, 1);

I NSERT | NTO authors_tbl (author_id, author, |anguage_ id) VALUES (2,
Mall’, 2);

I NSERT | NTO authors_tbl (author_id, author, |anguage_ id) VALUES (3,
"Qusterhout’, 4);

I NSERT | NTO authors_tbl (author_id, author, |anguage_ id) VALUES (4,
"lverson', 3);

-30-

8. DOING MORE WITH QUERIES

We havealready seen some basic queriesy bm order the results of a query andwhto put condi-

tions on the query output. Let uswmeee more examples of Wwove can modify ourSELECTstatements to
suit our needs.

8.1. Countingthe records in a table

Sometimes we just wish to kwdchow mary records gist in a table without actually outputting the
entire contents of these records. This can be ahiirough the use of a SQL functiaalled COUNT.
Let us first see the contents of ffreglang_tbltable.

id | language author year | standard
1 Prolog Colmerauer| 1972 ISO
2 Perl Wall 1987 (null)
3 APL Iverson 1964 ANSI
4 Tcl Ousterhout | 1988 (null)

Figure: contents of our pgramming languges table

| SELECT COUNT(*) FROM progl ang tbl;

Listing: Query to count number of records in the table

The output returned will be a single record with a single field with the valde @ke functionCOUNT
took one argument i.e. what to count and we provided it with * which means the entire record. Thus we
achieved our purpose of counting records in a table.

What would happen if instead ofvgig an entire record to count, we explicitly specify a column? And
what if the column had null values? Lsege this scenario by counting on gtandardfield of the table.

] SELECT COUNT(standard) FROM progl ang tbl; \

Listing: Query to count number of standdield values in the table

The output in this case would be tre@ue2, because we only a wo records with non-null values in the
standardfield.

8.2. ColumnAliases

Queries are frequently consumed directly as reports since SQidgsanough functionality tog mean-

ing to data stored inside a RDBMS. One of the features allowing thislisnn Aliases which let you
rename column headings in the resultant output. The general syntax for creating a column a&kas is gi
below.

| SELECT <columi1> <alias1> <colum2> <alias2> ... from <tabl e>; \

Listing: General Syntax for creating column aliases

-31-

For example, we wish to output our programming languages table witlv eclemns only But we do not
wish to call the authors of the languageaathors The person wanting the report wishesythe alled
creators This can be simply done by using the query Welo

] SELECT id, |anguage, author creator from proglang tbl; \

Listing: Renaming the author field to creator for reporting purposes

While creating a column alias will not permanantly rename a field, it wil shwin the resultant output.

id | language creator

1 Prolog Colmeraue
2 Perl Wall

3 APL Iverson

4 Tcl Ousterhout

Figure: the column alias output

8.3. Usingthe LIKE operator

While putting conditions on a query usidgHEREclauses, we h& dready seen comparison opera-
tors = andS NULL Now we take a bok at theLIKE operator which will help us with wildcard compar
isons. For matching we are provided witlotwilcard characters to use withKE.

1) % (Percent) Used to match multiple characters including a single character and no character.
2) _ (Underscore) Used to match exactly one character.

We will first use the % character for wildcard matching. Let us suppose we wish to list out languages that
start with the letteP.

] SELECT * FROM progl ang_t bl WHERE | anguage LIKE ' P% ; \

Listing: using the LIKE operator and % wildcard

The output of the alwe query should be all language records whose narmgm®bevith the letter capital. P
Note that this would not include ywfanguage that starts with the small letter p.

id | language author year | standard
1 Prolog Colmerauer| 1972 ISO
2 Perl Wall 1987 (null

Figure: all languaes garting with P

We @n see that using the % wildcard alésd us to match multiple characterseléel in the case of Perl.
But what if we wanted to restrict Wwanary characters we wished to match? What if our gazd vo write a
guery which displays the languages ending in the Iettert are only 3 characters in length? The first con-
dition could hae been satisfied using the pattés, but to satisfy both conditions in the same query we
use the _ wildcard. A pattern &R6l would result in returning botRerl andTcl but we modify our pattern

-32-

suitably to return only the latter.

SELECT * FROM progl ang_tbl WHERE | anguage LIKE ' |’

id | language author year | standard
4 Tcl Qusterhout | 1988 | (null)

Figure: output for _ wildcat matching

Note that the result did not include Perl since wplieitly gavetwo underscores to match 2 characters
only. Also it did not match APL since SQL data is case sersitid | is not equal to L.

-33-

9. AGGREGATION AND GROUPING

9.1. Aggregate Functions

An aggrgydae functionis used to compute summarization information from a table or tabekaW¥
already seen th€EOUNT agrregae function which counts the records matched. Similarly there are other
aggreaion functions in SQL lik AVG for calculating serages,SUMfor computing totals antMAX, MIN
for finding out maxima and minima values resp&tyi

9.2. UsingDISTINCT with COUNT

We havealready seen th€OUNT function, but we can further control its output using the optional
argumenDISTINCT. This allows us to count only non-duplicat@ues of the input specifiedo Tilustrate
this concept, we will ng insert some rows into oproglang_tbltable.

I NSERT | NTO proglang_tbl (id, |anguage, author, year, standard) VALUES
(5, 'Fortran’, 'Backus’, 1957, 'ANSI');

I NSERT | NTO proglang_tbl (id, |anguage, author, year, standard) VALUES
(6, 'PL/1', "IBM, 1964, 'ECVA');

Listing: Inserting some merows in our pogramming languges table

Note the ne data choice that we are populating. With Fortran we are adding arogramming language
that has a standard by the ANSI. With PL/I wevi@vea third distinctve sandards ayanisation - ECMA.
PL/I also shares the same birth year as APL (1964) giving us a dupkeatéeld. Nowv let us run a query
to check ha mary distinct year and standard values weéha

SELECT COUNT (DI STI NCT year) FROM proglang thl;

> 5

Listing: Counting distinct year values

SELECT COUNT (DI STI NCT standard) FROM progl ang_tbl;

>3

Listing: Counting distinct standdnalues

The first query result is straightforward e\Wave6 rows kut two of them share a common year value, thus
giving us the result 5. In the second result, out ofvésronly 4 of them ha values. Wo rows havea
NULL value in them meaning those languagegeha sandard. Among the 4 ws, two of them share a
common value, ging us the result - 3. Note that tB#STINCT clause did not count NULL values as
truly distinct values.

9.3. UsingMIN to find minimum values

TheMIN function is fairly straightforward. It looks at a particular set of rows and finds the minimum
value of the column which is provided as agwanent to it. For example, in our example table we wish to

-34-

find out from which year do we Y& records of programming languages. Analyzing the problem at hand,
we see that if we apply the aggae functionMIN to the fieldyearin our table, we should get the desired
output.

SELECT M N(year) from proglang_tbl;

> 1957

Listing: finding out the earliest year value in our table

The MAX function similarly finds the largest value in the column provided to it as an argument.

9.4. Grouping Data

The GROUP BY clause of éSELECTquery is used to group records based upon their fadlees.
This clause is placed after tieHEREconditional. For gkample, in our sample table we can group data by
which committee decided on their standard.

SELECT | anguage, standard FROM progl ang tbl WHERE standard |'S NOT NULL
GROUP BY standard, | anguage;

Listing: Grouping records by its fields

language | standard
APL ANSI
Fortran ANSI
PL/ ECMA
Prolog ISO

Figure: output for grouping records

The interesting thing to note here is the rule that the columns listed S8EtHECTclause must be present
in the GROUP BYclause. This leads us to the followingoteorollaries.

1) You cannot group by a column which is not present irStEieECTIist.
2) You must specify all the columns in the grouping clause which are presenSEULEETIist.

Another useful way to use grouping is to combine the operation with argagghenction. Supposing we
wish to count hev mary standards a particular genization has in our table. This can be aeieby com-
bining theGROUP BYtlause with th&€ OUNTaggreae function as gien below.

| SELECT standard, count(*) FROM proglang tbl GROUP BY standard; \
Listing: using GROUP BY withgaregate functions

-35-

standard | col2
ANSI 2
ECMA 1
ISO 1
(null) 2

Figure: query output showing the count of standaganizations in our table

9.5. TheHAVING Clause

Like aWHEREclause places conditions on the fields of a quas/HAVING clause places condi-
tions on the groups created BROUP BY. It must be placed immediately after t6&0OUP BYbut before
the ORDER Btlause.

SELECT | anguage, standard, year FROM progl ang _t bl
GROUP BY standard, year, |anguage HAVI NG year < 1980;

Listing: demonstration of the HAVING clause

language | standard | year
APL ANSI 1964
Fortran ANSI 1957
PL/I ECMA 1964
Prolog ISO 1972

Figure: output of the HAVING clause demonstration query

From the output we can clearly see that the recorddefbiandTcl are left out since tlyedo rot satisfy the
HAVING conditional of being created before 1980.

Note: The output of the @sious query demonsiting the GROUP BY and HAVING clause is not adcor
ing to the SQL standard. Ingres 10.1 would display #selt as above in its default configuratiomt b
other database magament systems adhering to the standaould swap the értran and APL ecords.
This is because in the GROUP BYarfirst dictates grouping by standsand then year (1957 < 1964).
This illustrates an important point, every relational database veadomplementation diérs from the
SQL standat in one way or another.

-36-

10. UNDERSTANDING JOINS

10.1. Whatis a Join?

A join operation allows you to retsie data from multiple tables in a sing&&ELECTquery Two
tables can be joined by a single join operabat the result can be joined ag with other tables. There
must exist a same or similar column between the tables being joined.

When you design an entire database system using good design principlesriilalization we dten
require the use of joins tov@ a ©@mplete picture to a useruery. For example, we split our programming
languages table into tw- one holding the author details and the other holding information about the lan-
guages itself. @ show a report listing authors and which programming languageg theated, we wuld

have © use a join.

author_id

author

language_id

1

Colmerauer

1

Wall

2

Qusterhout 4

Iverson 3
5
5

Kemetry
Kurtz

OO~ WIN

Figure: authors_tbl contents

id | language | year | standard
1 Prolog 1972 ISO
2 Perl 1987 (null
3 APL 1964 | ANSI
4 Tcl 1988 (null)
5 BASIC 1964 | ANSI

Figure: newlang_tbl contents

We row form a query to shve our desired output - the list of all authors with the corresponding language
they devdoped. W dhoose our join column as thenguage id field from the authors table. This corre-
sponds to thé field in the languages table.

SELECT aut hor, |anguage FROM aut hors_tbl,
WHERE | anguage id = id;

new ang_t bl

Listing: running a join operation on our two tables

-37-

author language
Colmerauer Prolog
Wall Perl
Iverson APL
Ousterhout Tcl
Kemery BASIC
Kurtz BASIC

Figure: result of our join query

The output of our query combines a column from both tablesgyus a better report. THenguage id =

id is called the joircondition Since the operator used in the join condition is an equality operator (=), this
join is called as an equijainAnother important thing to note is that the columns participating in the join
condition are not the ones we choose to be in the result of the query.

10.2. Altemative Join Syntax

You would have roticed that we formed our join query without much special syntax, usinggu re
lar FROM/WHERE combination. The SQL-92 standard introduced @&l keyword to allav us to orm
join queries. Since it &s introduced earliethe FROM/WHERE syntax is more common. Butvtbat the
majority of database vendorsveaimplemented most of the SQL-92 standard, the JOIN syntax is also in
widespread use. Belois the JOIN syntax equélent of the query we just wrote to display which author
created which programming language.

SELECT aut hor, |anguage FROM authors_tbl JO N new ang_t bl
ON | anguage _id = id;

Listing: Rewriting our query using the JOIN(SQL-92) syntax

Notice that instead separating theotw@bles using a comma (thereby making it a list), we use the JOIN
keyword. The columns which participate in the join condition are preceded b@Nhkeyword. The
WHERE clause can then be used after the join condition specification (ON clause) to spefufiyhen
conditions if needed.

10.3. Resolvingambiguity in join columns

In our example the join condition fields had distinct namegl -and whaanguaye id.But
(newlang_th) we kept the ly field's nrame adanguage id. This would create an ambiguity in the join
condition, which would become the confusilagguage id = language id. To resohe this, we need to
qualify the column by prepending it by the table name it belongs to and a .(period).

SELECT aut hor, |anguage FROM authors_tbl JO N new ang_t bl
ON aut hors_thl .l anguage id = new ang_t bl .| anguage i d;

Listing: Resolving the naming ambiguity by qualifying the columns

Another way to sole such ambiguity is to qualify the columns using taélieses The concept is to gé a
short name to a table and then use this to qualify the columns instead of a long, unwieldy table name.

-38-

SELECT aut hor, | anguage FROM aut hors_tbl a JO N new ang tbl |
ON a.language id =1.id;

Listing: using table aliases

Here the authors table isvgh the aliasa and the languages table isgi the aliad. Itis generally consid-

ered a good practice to qualify column names of a join conditigamdiess of whether there is a name
ambiguity or not.

10.4. Cioss Joins

You might think what would happen if we left out the join condition from our qu&ll what hap-
pens in the background of running a join query is that first all possible combinatiomsafreomade from
the tables participating in the join. Then thevsovhich satisfy the join condition are chosen for the output
(or further processing). If we lea aut the join condition, we get as the output all possible combinations of
records. This is called@ROSSJOIN or CartesiaProduct of the tables usually denoted by the sign X.

| SELECT aut hor, |anguage FROM authors tbl, new ang tbhl; \

Listing: query for showing the cartesian product of our tables

author language
Kemery BASIC
Kurtz BASIC
Colmerauer BSIC
Wall BASIC
Ousterhout BSIC
Iverson B\SIC
Kemery Prolog
Kurtz Prolog
Colmerauer Prolog
Wall Prolog
Ousterhout Prolog
Iverson Prolog
Kemery Perl
Kurtz Perl
Colmerauer Perl
Wall Perl
Ousterhout Perl

Figure: the cartesian product of our tables

Another vay to rewrite this query is to actually use the JO#8yword with a preceding gumentCROSS
as shown belw.

| SELECT aut hor, |anguage FROM authors _tbl CROSS JO N new ang_tbl ; \

Listing: rewriting the query using CROSS JOIN

10.5. Selfloins

-390-

Sometimes a table within its own columns has meaningful data but one (or more) of its fields refer to
another field in the same table. For example if we leatible in which we capture programming languages
which influenced other programming languages and denote the influence relationship by the language id, to
shav the resolved output weomld hare © join the table with itself. This is also called a Conssr-

JOIN.

CREATE TABLE i nfl ang_tbl

(id

| NTECER

PRI MARY KEY,

| anguage

VARCHAR(20) NOT NULL,

i nfluenced_by | NTEGER);

VALUES (3, 'Algol’, 1);

I NSERT I NTO i nflang_tbl (id, |anguage)
VALUES (1, 'Fortran’);
I NSERT I NTO i nflang_tbl (id, |anguage, influenced_ by)
VALUES (2, 'Pascal’, 3);
I NSERT I NTO i nflang_tbl (id, |anguage, influenced_ by)

Listing: creating and populating our langga nfluence table

id | language | influenced_by
1 Fortran (null

2 Pascal 3

3 Algol 1

Figure: contents of inflang_tbl

Our goal is to nev write a self join query to display which language influenced which one, i.e. edselv

influenced_bygolumn.

SELECT | 1.1 anguage, | 2.1 anguage AS infl uenced
FROMinflang tbl 11, inflang_tbl 12
WHERE | 1.id = | 2.influenced_by;

Listing: running a self join query

Notice the use of table aliases to qualify the join condition columns as separate and the use of the AS

keyword which renames the column in the output.

language | influenced
Algol Pascal
Fortran Algol

Figure: result of our self join query

-40-

APPENDIX: Major Database Management Systems

1) Ingres(Actian Corporation)

A full featured relational database management systaifalde as a proprietary or an open source edition.
http://www.actian.com/products/ingres

2) OracleDatabase (Oracle Corporation)

An enterprise leel database management system with a free to use Express Edition.
http://www.oracle.com/technetwork/products/express-edition/overview/index.html

3) IBM DB2 (IBM Corporation)

A powerful relational database management system with a free edition called DB2 Express-C.
http://www-01.ibm.com/software/data/db2/express/

4) PostgreSQL

Open Source relational database management system with tons of features.
http://www.postgresqgl.org/

5) MySQL (Oracle Corporation)

Popular and easy to use open source DBMS.
http://www.mysgl.com/

6) Firebird

Full featured, open source relational DBMS.
http://www.firebirdsql.org/

7) SQLite(D. Richard Hipp)

Popular small and free to use embeddable database system.
http://sqlite.org/

8) AccesgMicrosoft Corporation)

Personal relational database system with a graphical interface.
http://office.microsoft.com/access

-41-

GLOSSARY

Alias A temporary name gén to a fable in the FROM clause.

Cross Join A join listing all possible combination of rows without filtering.

Database Aollection of oganized data. Can be stored in a digital format tk a omputer.
DBMS Databas&lanagement System. A software to control and manage digital databases.
Field Acolumn in a table.

Foreign Key A column in a table that matches a primagy kolumn in another table.

Normalization Breakinglown a rav database into tables and removing redundancies.
Record Arow of a able.
SQL StructuredQuery Language. A language used to interact with databases.

Table A matrix like dsplay/abstraction of data in row-column format.

